Advertisements
Advertisements
प्रश्न
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
उत्तर
Given \[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
We shall use the identity `a^3 + b^3 = (a+b)(a^2 - ab + b^2)`
We can rearrange the `(x/2 + 2y) (x^2/4 - xy + 4y^2)`as
` = (x/2 + 2y)[(x/2)^2 - (x/2)(2y)+ (2y)^2]`
` = (x/2)^3 + (2y)^3`
`= (x/2 ) xx (x/2 )xx (x/2 )+ (2y) xx (2y) xx (2y) `
`= x^3/8 + 8y^3`
Hence the Product value of `(x/2 + 2y) (x^2/4 - xy + 4y^2)`is `x^2 / 8 + 8y^3`.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Write in the expanded form:
`(m + 2n - 5p)^2`
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
If a + b = 10 and ab = 21, find the value of a3 + b3
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
Evalute : `( 7/8x + 4/5y)^2`
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
The value of 2492 – 2482 is ______.