Advertisements
Advertisements
प्रश्न
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
उत्तर
In the given problem, we have to find the value of `x^3 + 1/x^3`
Given `x^3 + 1/x^3 = 98`
We shall use the identity `(x+y)^2 = x^2 + y^2 + 2xy`
Here putting `x^2 + 1/x^2 = 98`,
`(x+1/x)^2 = x^2 +1/x^2 + 2 xx x xx 1/x`
`(x+1/x)^2 = x^2 +1/x^2 + 2 xx x xx 1/x`
`(x+1/x)^2 = 98 + 2`
`(x+1/x)^2 = 100`
`(x+1/x) = sqrt100`
`(x+1/x) = ± 10`
In order to find `x^3 +1/x^3`we are using identity `a^3 +b^3 = (a+b)(a^2 +b^2 - ab)`
`x^3 + 1/x^3 = ( x+1/x) (x^2 + 1/x^2 - x xx 1/x)`
Here `(x+1/x) = 10` and `x^2 + 1/x^2 = 98`
`x^3 + 1 /x^3 = (x+1/x)(x^2 + 1/x^2 - x xx 1/x)`
` = 10 (98 - 1)`
` = 10 xx 97`
` = 970`
Hence the value of `x^3 + 1/x^3` is 970.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Give possible expression for the length and breadth of the following rectangle, in which their area is given:
Area : 35y2 + 13y – 12 |
Evaluate the following using identities:
`(2x+ 1/x)^2`
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If a − b = −8 and ab = −12, then a3 − b3 =
If a1/3 + b1/3 + c1/3 = 0, then
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Use identities to evaluate : (97)2
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Evaluate: (5xy − 7) (7xy + 9)
Expand the following:
(x - 5) (x - 4)
Expand the following:
`(2"a" + 1/(2"a"))^2`
If x + y = 9, xy = 20
find: x - y
Simplify:
(4x + 5y)2 + (4x - 5y)2
Expand the following:
`(1/x + y/3)^3`