Advertisements
Advertisements
प्रश्न
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
उत्तर
In the given problem, we have to find the value of equation using identity
Given \[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
We shall use the identity `(a-b)(a^2 + ab + b^2) = a^3 - b^3`
We can rearrange the \[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]as
`= (3/x - x/3) ((3/x)^2 + (x/3)^2 + (3/x)(x/3))`
` = (3/x)^3 - (x/3)^3`
\[= \left( \frac{3}{x} \right) \times \left( \frac{3}{x} \right) \times \left( \frac{3}{x} \right) - \left( \frac{x}{3} \right) \times \left( \frac{x}{3} \right) \times \left( \frac{x}{3} \right)\]
\[ = \frac{27}{x^3} - \frac{x^3}{27}\]
Now substituting the value x=3, in `27/x^3 - x^3/27`we get,
`27/3^3 - 3^3/27`
`27/27 - 27/27`
` = 0`
Hence the Product value of \[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\] is `0`.
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
(2x + 1)3
Evaluate the following using suitable identity:
(998)3
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Factorise:
27x3 + y3 + z3 – 9xyz
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
Evaluate the following using identities:
`(2x+ 1/x)^2`
Write in the expanded form: (ab + bc + ca)2
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
Evaluate of the following:
(99)3
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If x = −2 and y = 1, by using an identity find the value of the following
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Use the direct method to evaluate :
(3b−1) (3b+1)
Expand the following:
`(2"a" + 1/(2"a"))^2`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`