Advertisements
Advertisements
प्रश्न
Write the following cube in expanded form:
(2x + 1)3
उत्तर
It is known that,
(a + b)3 = a3 + b3 + 3ab(a + b) and (a − b)3 = a3 − b3 − 3ab(a − b (2x + 1)3
= (2x)3 + 13 + (3 × 2x × 1)(2x + 1)
= 8x3 + 1 + 6x(2x + 1)
= 8x3 + 12x2 + 6x + 1
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Evaluate the following using identities:
117 x 83
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Write in the expanded form (a2 + b2 + c2 )2
Write in the expanded form: (-2x + 3y + 2z)2
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
Evaluate the following without multiplying:
(95)2
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Factorise the following:
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz