Advertisements
Advertisements
प्रश्न
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
उत्तर
In the given problem, we have to simplify equation
Given (2x − 5y)3 − (2x + 5y)3
We shall use the identity `a^3 - b^3 = (a-b)(a^2+ b^2 + ab)`
Here ` a= (2x - 5y), b = (2x + 5y)`
By applying the identity we get
` = (2x - 5y - 2x 5y)[(2x - 5y)^2 +(2x + 5y)^2 + ((2x - 5y) xx (2x + 5y))]`
` = ( 2x - 5y - 2x - 5y)[(2x xx 2x + 5y xx 5y - 2 xx 2x xx 5y) + (2x xx 2x + 5yxx 5y + 2 xx 2x xx 5y) + ( 4x^2 - 25y^2)]`
` = ( - 10y)[(4x^2 + 25y^2 - 20xy)+ (4x^2 + 25y^2 + 20xy ) + 4x^2 + 25y^2 ]`
` = ( - 10y)[4x^2 + 25y^2 - 20xy+ 4x^2 + 25y^2 + 20xy + 4x^2 -25y^2 ]`
By rearranging the variable we get,
` = ( - 10y)[4x^2 + 4x^2 + 4x^2 + 25y^2]`
` = - 10y xx [12x^2 + 25y^2]`
`= -120x^2y - 250y^3`
Hence the simplified value of `2x - 5y^3 -(2x + 5y)^3`is `-120x^2y - 250y^3`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Expand the following, using suitable identity:
(2x – y + z)2
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Write in the expanded form: `(x + 2y + 4z)^2`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
1043 + 963
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
Find the following product:
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If m - n = 0.9 and mn = 0.36, find:
m + n
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.