Advertisements
Advertisements
प्रश्न
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
उत्तर
In the given problem, we have to simplify equation
Given `(x+ 2/x)^3 + (x-2/x) `
We shall use the identity `a^3 + b^3 = (a+b)(a^2 +b^2 - ab)`
Here `a= (x+2/x) ,b=(x-2/x)`
By applying identity we get
` = (x+2/x + x - 2/x-2/x) [(x+2/x)^2 + (x-2/x)^2 - ((x+2/x) xx (x-2/x))]`
` = (x+2/x + x -2/x) [(x xx x + 2/x xx 2/x + 2 xx x xx 2/x) +(x xx x + 2/x xx 2/x - 2 xx x xx 2/x) - (x^2 + 4/x^2)]`
` = (2x)[(x^2 + 4/x^2 +(4x)/x)+ (x^2 + 4/x^2 -(4x)/x) - (x^2 - 4/x^2)]`
` = (2x)[x^2+ 4/x^2 + (4x)/x + x^2 + 4 /x^2 -(4x)/x - x^2 + 4 /x^2]`
By rearranging the variable we get,
` = (2x)[x^2 + 4/x^2 + 4/x^2 + 4/x^2]`
` = 2x xx [x^2+ 12/x^2]`
` = 2x^3 + 24/x`
Hence the simplified value of `(x+2/x)^3+(x-2/x)^3`is `2x^3 + 24/x`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Use suitable identity to find the following product:
(x + 8) (x – 10)
Evaluate following using identities:
991 ☓ 1009
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Evaluate of the following:
`(10.4)^3`
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
Evalute : `( 7/8x + 4/5y)^2`
If a - b = 7 and ab = 18; find a + b.
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Evaluate: (4 − ab) (8 + ab)
Simplify by using formula :
(5x - 9) (5x + 9)
Simplify by using formula :
(a + b - c) (a - b + c)
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Evaluate the following :
1.81 x 1.81 - 1.81 x 2.19 + 2.19 x 2.19
Expand the following:
(3a – 5b – c)2