Advertisements
Advertisements
प्रश्न
Simplify by using formula :
(a + b - c) (a - b + c)
उत्तर
(a + b - c) (a - b + c)
= (a + b - c) [a - (b - c)]
= (a)2 - (b - c)2
(using identity : (a + b) (a - b) = a2 - b2)
= a2 - (b2 + c2 - 2bc)
= a2 - b2 - c2 + 2bc.
APPEARS IN
संबंधित प्रश्न
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Write in the expanded form: (-2x + 3y + 2z)2
If x = −2 and y = 1, by using an identity find the value of the following
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Evalute : `((2x)/7 - (7y)/4)^2`
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.