Advertisements
Advertisements
प्रश्न
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
उत्तर
We have
`a^2 + b^2 + c^2 - ab - bc - ca`
`= 2/2[a^2 + b^2 + c^2 - ab - bc - ca]` [Mulitply and divide by 2]
`= 1/2 [2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca]`
`= 1/2 [a^2 + a^2 + b^2 + b^2 + c^2 - 2ab - 2bc - 2ac]`
`= 1/2[(a^2 + b^2 - 2ab) + (a^2 + c^2 - 2ac) + (b^2 + c^2 - 2bc)]`
`= 1/2 [(a - b)^2 + (b - c)^2 + (c - a)^2]` `[∵ (a - b)^2 = a^2 + b^2 - 2ab]`
`= ((a - b)^2 + (b -c)^2 + (c - a)^2)/2 >= 0`
`∴ a^2 + b^2 + c^2 - ab - bc -ca >= 0`
hence `a^2 + b^2 - ab - bc - ca > 0`
Hence `a^2 + b^2 + c^2 - ab - bc - ca` is always non-negative for all values of a, b and c.
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Write in the expanded form: `(x + 2y + 4z)^2`
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
If a − b = 4 and ab = 21, find the value of a3 −b3
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
If x = −2 and y = 1, by using an identity find the value of the following
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If a - b = 10 and ab = 11; find a + b.
If m - n = 0.9 and mn = 0.36, find:
m + n
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
The coefficient of x in the expansion of (x + 3)3 is ______.
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.