Advertisements
Advertisements
प्रश्न
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.
उत्तर
Given, a + b + c = 9 and ab + bc + ca = 26 ...(i)
Now, a + b + c = 9
On squaring sides, we get
(a + b + c)2 = (9)2
⇒ a2 + b2 + c2 + 2ab + bc + ca = 81 ...[Using identity, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca]
⇒ a2 + b2 + c2(ab + bc + ca) = 81
⇒ a2 + b2 + c2 + 2(26) = 81 ...[From equation (i)]
⇒ a2 + b2 + c2 = 81 – 52 = 29
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 8) (x – 10)
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Evaluate of the following:
933 − 1073
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
Use identities to evaluate : (502)2
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Expand the following:
(x - 3y - 2z)2
Find the squares of the following:
(2a + 3b - 4c)
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If p + q = 8 and p - q = 4, find:
p2 + q2
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
(4x + 5y)2 + (4x - 5y)2
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6