Advertisements
Advertisements
प्रश्न
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz
उत्तर
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz
= (4x)2 + (–2y)2 + (3z)2 + 2(4x)(–2y) + 2(–2y)(3z) + 2(4x)(3z) ...[Using identity, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca]
= (4x – 2y + 3z)2
= (4x – 2y + 3z)(4x – 2y + 3z)
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(2x – y + z)2
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Evaluate the following using identities:
(2x + y) (2x − y)
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
Use the direct method to evaluate :
(x+1) (x−1)
Use the direct method to evaluate :
(3b−1) (3b+1)
Use the direct method to evaluate :
(4+5x) (4−5x)
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Simplify by using formula :
(2x + 3y) (2x - 3y)
Evaluate the following without multiplying:
(1005)2
If x + y = 9, xy = 20
find: x - y
Simplify:
(7a +5b)2 - (7a - 5b)2
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Without actually calculating the cubes, find the value of:
(0.2)3 – (0.3)3 + (0.1)3