Advertisements
Advertisements
प्रश्न
Evaluate the following using identities:
(2x + y) (2x − y)
उत्तर
In the given problem, we have to evaluate expressions by using identities.
We have been given (2x + y) (2x − y)
We shall use the identity `(a + b)(a - b)= a^2 -b^2`
Here a = 2x, b = y
By applying identity we get
`(2x + y)(2x - y) = (2x)^2 - (y)^2`
`= (2x xx 2x) - (y xx y)`
`= 4x^2 - y^2`
Hence the value of (2x + y)(2x - y) is `4x^2 - y^2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following using suitable identity:
(102)3
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Evaluate following using identities:
991 ☓ 1009
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Evaluate of the following:
1113 − 893
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If x = −2 and y = 1, by using an identity find the value of the following
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
Simplify by using formula :
(x + y - 3) (x + y + 3)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
The value of 2492 – 2482 is ______.
Using suitable identity, evaluate the following:
9992
Expand the following:
(3a – 5b – c)2
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`