Advertisements
Advertisements
प्रश्न
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
उत्तर
We have
`(x + 1/x)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`
`=> (x + 1/x)^2 = (x^2 + 1/x^2) + 2`
`=> (x + 1/x)^2 = 79 + 2`
`=> (x + 1/x)^2 = 81`
`=> (x + 1/x)^2 = (+-9)^2`
`=> x + 1/x = +-9`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Evaluate the following using suitable identity:
(998)3
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
Write in the expanded form: `(x + 2y + 4z)^2`
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
Simplify of the following:
(x+3)3 + (x−3)3
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Use the direct method to evaluate :
(4+5x) (4−5x)
Using suitable identity, evaluate the following:
9992
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
Find the following product:
(x2 – 1)(x4 + x2 + 1)