Advertisements
Advertisements
प्रश्न
Evaluate the following using suitable identity:
(998)3
उत्तर
It is known that,
(a + b)3 = a3 + b3 + 3ab(a + b) and (a − b)3 = a3 − b3 − 3ab(a − b)
∴ (998)3 = (1000 − 2)3
= (1000)3 − (2)3 − 3(1000)(2)(1000 − 2)
= 1000000000 − 8 − 6000(998)
= 1000000000 − 8 − 5988000
= 1000000000 − 5988008
= 994011992
APPEARS IN
संबंधित प्रश्न
Evaluate the following using suitable identity:
(99)3
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Find the value of 27x3 + 8y3, if 3x + 2y = 14 and xy = 8
Simplify of the following:
(x+3)3 + (x−3)3
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
If a1/3 + b1/3 + c1/3 = 0, then
Use identities to evaluate : (101)2
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Expand the following:
(m + 8) (m - 7)
Evaluate the following without multiplying:
(1005)2
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If a - b = 10 and ab = 11; find a + b.
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
Simplify:
(2x + y)(4x2 - 2xy + y2)
Using suitable identity, evaluate the following:
1033