Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
विकल्प
196
194
192
190
उत्तर
In the given problem, we have to find the value of `x^4 + 1/x^4`
Given `x+ 1/x = 4`
We shall use the identity `(a+b)^2 = a^2 +b^2 + 2ab`
Here put,`x+ 1/x = 4`
`(x+ 1/x)^2 = x^2 + 1/x^2 + 2 (x xx 1/x)`
`(4)^2 = x^2 + 1/x^2 + 2 (x xx 1/x )`
`16 = x^2 + 1/x^2 + 2`
` 16 -2 = x^2 + 1/x^2`
`14 = x^2 + 1/x^2`
Squaring on both sides we get,
`(14)^2 = (x^2 + 1/x^2 )^2`
`14 xx 14 = (x^2)^2 + (1/x^2) ^2 + 2 xx x^2 xx 1/x^2`
`196 = x^4 + 1/x^4 + 2`
`196 -2 = x^4 + 1/x^4`
`194= x^4 + 1/x^4`
Hence the value of `x^4 + 1/x^4`is 194.
APPEARS IN
संबंधित प्रश्न
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
Find the following product:
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
Use identities to evaluate : (101)2
If a + b = 7 and ab = 10; find a - b.
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
If m - n = 0.9 and mn = 0.36, find:
m2 - n2.
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz