Advertisements
Advertisements
प्रश्न
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
उत्तर
In the given problem, we have to find the value of `(a^2 - ab+ b^2),(a^2 + ab +b^2)`
Given `a+b = 10 , ab = 16`
We shall use the identity \[\left( a + b \right)^3 = a^3 + b^3 + 3ab(a + b)\]
We can rearrange the identity as
`a^3 + b^3 = (a+b)^3 - 3ab (a+b)`
`a^3 +b^3 = (10)^3 - 3 xx 16 (10)`
`a^3 + b^3= 1000 - 480`
`a^3 + b^3 = 520`
Now substituting values in `a^3 + b^3 = (a+b) (a^2 + b^2 - ab)`as, `a^3 +b^3 = 520,a+b = 10`
`a^3 + b^3 = (a+b)(a^2 + b^2 - ab)`
`520 = 10 (a^2 + b^2 - ab)`
`520/10 = (a^2 +b^2 - ab)`
`52 = (a^2 + b^2 -ab)`
We can write `a^2 +b^2 + ab ` as `a^2 + b^2 +ab -2ab +2ab`
Now rearrange `a^2+b^2+ab - 2ab +2ab` as
`= a^2 + 2ab +b^2 -2ab +ab`
`=(a+b)^2 - ab`
Thus `a^2 +b^2 +ab =(a+b)^2 -ab`
Now substituting values `a+b = 10,10 ab = 16`
`a^2 +b^2 + ab = (10)^2 - 16`
`a^2 + b^2 +ab = 100 -16`
`a^2 + a^2 + ab = 84`
Hence the value of `(a^2 - ab +b^2),(a^2 + ab+b^2)`is `52,84` respectively.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(x + 2y + 4z)2
Expand the following, using suitable identity:
(2x – y + z)2
Evaluate the following using suitable identity:
(99)3
Evaluate the following using identities:
`(a^2b - b^2a)^2`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
Find the following product:
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
The product (x2−1) (x4 + x2 + 1) is equal to
If a + b = 7 and ab = 10; find a - b.
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
Simplify:
(x + y - z)2 + (x - y + z)2