Advertisements
Advertisements
प्रश्न
Evaluate the following using identities:
`(a^2b - b^2a)^2`
उत्तर
In the given problem, we have to evaluate expressions by using identities.
The given expression is `(a^2b - b^2a)^2`
We shall use the identity `(x - y)^2 = x^2- 2xy + y^2`
Here `x = a^2b`
`y = b^2a`
By applying identity we get
`(a^2b - b^2a)^2 = (a^2b)^2 + (b^2a)^2 - 2 xx a^2b xx b^2a`
`= (a^2b xx a^2b) + (b^2a xx b^2a) - 2 xx a^2b xx b^2a`
`= a^4b^2 - 2a^3b^3 + b^4a^2`
Hence the value of `(a^2b - b^2a)^2 "is" a^4b^2 - 2a^3b^3 + b^4a^2`
APPEARS IN
संबंधित प्रश्न
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
Simplify the following:
322 x 322 - 2 x 322 x 22 + 22 x 22
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
Evaluate of the following:
933 − 1073
Find the value of 27x3 + 8y3, if 3x + 2y = 14 and xy = 8
Simplify of the following:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Evaluate: (4 − ab) (8 + ab)
Expand the following:
(2p - 3q)2
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
Using suitable identity, evaluate the following:
9992
Expand the following:
`(1/x + y/3)^3`
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).