Advertisements
Advertisements
प्रश्न
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).
उत्तर
According to the question:
(x2 + 4y2 + z2 + 2xy + xz – 2yz) × (–z + x – 2y)
Now, multiply as follows:
= {x + (–2y) + (–z)}{(x)2 + (–2y)2 + (–z2) – (x)(–2y) – (–2y)(–z) – (–z)(x)}
= x3 + (–2y)3 + (–z)3 – 3 × x × (–2y) × (–z)
Use the identity:
(a + b + c)(a2 + b2 + c2 – ab – bc – ca) = a3 + b3 + c3 – 3abc
= x3 – 8y3 – z3 – 6xyz
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Simplify the following:
322 x 322 - 2 x 322 x 22 + 22 x 22
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
If a + b = 10 and ab = 21, find the value of a3 + b3
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
If a + b = 7 and ab = 12, find the value of a2 + b2
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Simplify by using formula :
(a + b - c) (a - b + c)
Evaluate the following without multiplying:
(999)2
If x + y = 9, xy = 20
find: x - y
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
(x + y - z)2 + (x - y + z)2
Which one of the following is a polynomial?