Advertisements
Advertisements
प्रश्न
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
विकल्प
5
4
3
2
उत्तर
In the given problem, we have to find the value of `x-1/x`
Given `x^3 - 1/x^3 = 14`
We shall use the identity `(a-b)^3 = a^3 -b^3-3ab (a-b)`
`(x-1/x)^3 = x^3 - 1/x^3 - 3 xx x xx 1/x(x-1/x)`
`(x = 1/x)^3 = x^3 - 1/x^3 -3 (x-1/x)`
Put `x- 1/x = y` we get,
`(y)^3 = x^3 -1/x^3 -3(y)`
Substitute y = 2 in above equation we get,
`(2)^3 = x^3 -1/x^3 - 3 (2) `
`8 = x^3 - 1/x^3 -6`
`8+6 = x^2 -1/x^3`
`14 = x^3 - 1/x^3`
The Equation `(y )^3 = x^3 - 1/x^3 -3(y)`satisfy the condition that `x^3 - 1/x^3 = 14`
Hence the value of `x - 1 /x`is 2
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(x + 2y + 4z)2
Give possible expression for the length and breadth of the following rectangle, in which their area is given:
Area : 35y2 + 13y – 12 |
Evaluate the following using identities:
(399)2
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Write in the expanded form:
`(m + 2n - 5p)^2`
Simplify of the following:
(x+3)3 + (x−3)3
Find the following product:
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If a + b = 7 and ab = 12, find the value of a2 + b2
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
Use identities to evaluate : (101)2
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
Find the squares of the following:
(2a + 3b - 4c)
Simplify by using formula :
(2x + 3y) (2x - 3y)
The coefficient of x in the expansion of (x + 3)3 is ______.