Advertisements
Advertisements
प्रश्न
Evaluate the following using identities:
(399)2
उत्तर
In the given problem, we have to evaluate expressions by using identities.
Given `(399)^2`
We can write`(399)^2 " as " (400 - 1)^2`
We shall use the Identity `(x - y)^2 - 2xy + y^2`
Where x = 400, y = 1
By applying in identity we get
`(400 - 1)^2 = (400)^2 - 2 xx 400 xx 1 + (1)^2`
`= 400 xx 400 - 800 + 1`
= 16000 - 800 + 1
=159201
Hence the value of `(399)^2` is 159201
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Use suitable identity to find the following product:
(x + 8) (x – 10)
Factorise:
27x3 + y3 + z3 – 9xyz
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Write in the expanded form: (-2x + 3y + 2z)2
Simplify (2x + p - c)2 - (2x - p + c)2
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Use identities to evaluate : (101)2
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`
Expand the following:
(4a – b + 2c)2
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.