Advertisements
Advertisements
प्रश्न
Evaluate the following using identities:
(399)2
उत्तर
In the given problem, we have to evaluate expressions by using identities.
Given `(399)^2`
We can write`(399)^2 " as " (400 - 1)^2`
We shall use the Identity `(x - y)^2 - 2xy + y^2`
Where x = 400, y = 1
By applying in identity we get
`(400 - 1)^2 = (400)^2 - 2 xx 400 xx 1 + (1)^2`
`= 400 xx 400 - 800 + 1`
= 16000 - 800 + 1
=159201
Hence the value of `(399)^2` is 159201
APPEARS IN
संबंधित प्रश्न
Evaluate the following using suitable identity:
(99)3
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
Evaluate following using identities:
991 ☓ 1009
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Simplify `(a + b + c)^2 + (a - b + c)^2`
Evaluate of the following:
1043 + 963
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
If x = −2 and y = 1, by using an identity find the value of the following
If a − b = 5 and ab = 12, find the value of a2 + b2
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If a2 + b2 + c2 − ab − bc − ca =0, then
Evalute : `((2x)/7 - (7y)/4)^2`
Use the direct method to evaluate :
(xy+4) (xy−4)
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
If m - n = 0.9 and mn = 0.36, find:
m + n
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
(x + y - z)2 + (x - y + z)2
Simplify:
(2x + y)(4x2 - 2xy + y2)
Factorise the following:
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz