Advertisements
Advertisements
प्रश्न
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
उत्तर
`"a" + (1)/"a" = 2`
`("a" + 1/"a")^2`
= `"a"^2 + (1)/"a"^2 + 2`
⇒ (2)2 = `"a"^2 + (1)/"a"^2 + 2`
⇒ `"a"^2 + (1)/"a"^2`
= 4 - 2
= 2
`("a" + 1/"a")^3`
= `"a"^3 + (1)/"a"^3 + 3("a" + 1/"a")`
⇒ (2)3 = `"a"^3 + (1)/"a"^3 + 3(2)`
⇒ `"a"^3 + (1)/"a"^3`
= 8 - 6
= 2
`("a"^2 + 1/"a"^2)^2`
= `"a"^4 + (1)/"a"^4 + 2`
⇒ (2a)2 = `"a"^4 + (1)/"a"^4 + 2`
⇒ `"a"^4 + (1)/"a"^4`
= 4 - 2
= 2
Thus, `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
104 × 96
Expand the following, using suitable identity:
(x + 2y + 4z)2
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.