मराठी

If a + b + c = 0, then a3 + b3 + c3 is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If a + b + c = 0, then a3 + b3 + c3 is equal to ______.

पर्याय

  • 0

  • abc

  • 3abc

  • 2abc

MCQ
रिकाम्या जागा भरा

उत्तर

If a + b + c = 0, then a3 + b3 + c3 is equal to 2abc.

Explanation:

We know that,

a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)

As a + b + c = 0, So, a3 + b3 + c3 – 3abc = (0)(a2 + b2 + c2 – ab – bc – ca) = 0

Hence, a3 + b3 + c3 = 3abc

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Polynomials - Exercise 2.1 [पृष्ठ १६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
पाठ 2 Polynomials
Exercise 2.1 | Q 21. | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Use suitable identity to find the following product:

(3 – 2x) (3 + 2x)


Evaluate the following product without multiplying directly:

103 × 107


Evaluate the following using suitable identity:

(102)3 


What are the possible expressions for the dimensions of the cuboids whose volume is given below?

Volume : 3x2 – 12x

Evaluate the following using identities:

(1.5x− 0.3y2) (1.5x+ 0.3y2)


Find the cube of the following binomials expression :

\[\frac{1}{x} + \frac{y}{3}\]


Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.


Find the following product:

(1 + x) (1 − x + x2)

If x = −2 and y = 1, by using an identity find the value of the following

\[\left( 5y + \frac{15}{y} \right) \left( 25 y^2 - 75 + \frac{225}{y^2} \right)\]

If a − b = 5 and ab = 12, find the value of a2 + b2


If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]


If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]


The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to


Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)


Use the direct method to evaluate :
(ab+x2) (ab−x2)


Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001


Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1


If `"a"  + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`


Using suitable identity, evaluate the following:

101 × 102


Without actually calculating the cubes, find the value of:

`(1/2)^3 + (1/3)^3 - (5/6)^3`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×