Advertisements
Advertisements
प्रश्न
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
बेरीज
उत्तर
999 x 1001
= (1000 - 1) x (1000 + 1)
= (1000)2 - (1)2
= 1000000 - 1
= 999999.
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Simplify (2x + p - c)2 - (2x - p + c)2
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Simplify by using formula :
(a + b - c) (a - b + c)
If x + y = 1 and xy = -12; find:
x2 - y2.