Advertisements
Advertisements
Question
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
Solution
999 x 1001
= (1000 - 1) x (1000 + 1)
= (1000)2 - (1)2
= 1000000 - 1
= 999999.
APPEARS IN
RELATED QUESTIONS
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Expand the following:
(x - 3y - 2z)2
Evaluate the following without multiplying:
(999)2
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
Factorise the following:
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz