Advertisements
Advertisements
Question
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Solution
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
`=>[(1/2 a)^2 - (3b)^2][1/4 a^2 + 9b^2]` `[∵ (a + b)(a - b) = a^2 - b^2]`
`= [(1/4 a^2) -9b^2][1/2a^2 + 9b^2]` `[∵ (ab)^2 = a^2 - b^2]`
`= [1/4 a^2] - [9b^2]^2` `[∵ (a - b)(a + b) = a^2 - b^2]`
`= 1/16 a^4 - 81b^4`
`∴ (1/2 a - 3b)(1/2 a + 3b)(1/4 a^2 + 9b^2) = 1/16 a^4 - 81b^4`
APPEARS IN
RELATED QUESTIONS
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Factorise:
27x3 + y3 + z3 – 9xyz
Write in the expanded form:
(2a - 3b - c)2
If a − b = 4 and ab = 21, find the value of a3 −b3
Find the following product:
Evaluate:
253 − 753 + 503
Find the square of `(3a)/(2b) - (2b)/(3a)`.
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Use the direct method to evaluate :
(2+a) (2−a)
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
Simplify:
(2x + y)(4x2 - 2xy + y2)
Using suitable identity, evaluate the following:
101 × 102
Expand the following:
`(4 - 1/(3x))^3`
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4