Advertisements
Advertisements
Question
Evaluate:
253 − 753 + 503
Solution
In the given problem we have to evaluate the following
Given 253 − 753 + 503
We shall use the identity `a^3 + b^3 +c^3 -3abc = (a+b+c)(a^2 + b^^2 + c^2 - ab - bc - ca)`
Let Take a = 25,b = 75,c = 50
`a^3 + b^3 + c^3 (a+b+c) (a^2+b^2 + c^2 - ab - bc -ca)`
` a^3 + b^3 + c^3 = (a+b+c)(a^2 + b^2 + c^2 -ab - bc-ca) + 3abc`
`a^3 + b^3+ b^3 = (-75 + 25 -50)(a^2 + b^2 + c^2 - ab =bc - ca) + 3abc`
`a^3 + b^3 + c^3 = 0 xx (a^2 + b^2 c^2 - ab - bc - ca) + 3abc`
`a^3+ b^3+c^3 = +3abc`
`25^3 - 75^3+50^3 = 3 xx 25 xx 50 xx -75`
` = -281250`
Hence the value of 253 − 753 + 503 is` -281250`.
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Evaluate the following using suitable identity:
(99)3
Evaluate the following using suitable identity:
(102)3
Factorise the following:
27 – 125a3 – 135a + 225a2
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
If x = −2 and y = 1, by using an identity find the value of the following
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Evaluate: 20.8 × 19.2
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Simplify:
(2x + y)(4x2 - 2xy + y2)