Advertisements
Advertisements
Question
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
Solution
Area = Length × Breadth
The expression given for the area of the rectangle has to be factorised. One of its factors will be its length and the other will be its breadth.
Area of a rectangle = (Length) × (Breadth)
25a2 – 35a + 12 = 25a2 – 15a − 20a + 12
= 5a(5a – 4) – 3(5a – 4)
= (5a – 4)(5a – 3)
Possible expression for length = 5a – 4
Possible expression for breadth = 5a – 3
APPEARS IN
RELATED QUESTIONS
Simplify the following:
322 x 322 - 2 x 322 x 22 + 22 x 22
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Write in the expanded form: (ab + bc + ca)2
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
Simplify of the following:
(x+3)3 + (x−3)3
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
If a − b = −8 and ab = −12, then a3 − b3 =
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Evaluate: 203 × 197
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
(7a +5b)2 - (7a - 5b)2
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz