Advertisements
Advertisements
Question
Simplify the following:
322 x 322 - 2 x 322 x 22 + 22 x 22
Solution
We have
322 x 322 - 2 x 322 x 22 + 22 x 22
= (322 - 22)2 [∵ `(a - b)2 = a^2 - 2ab = b^2`]
`= (300)^2`
= 90000
∴ 322 x 322 - 2 x 322 x 22 + 22 xx 22 = 90000
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Evaluate following using identities:
991 ☓ 1009
Write in the expanded form: `(x + 2y + 4z)^2`
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
Find the square of : 3a - 4b
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
If a - b = 7 and ab = 18; find a + b.
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Find the squares of the following:
(2a + 3b - 4c)
Evaluate the following without multiplying:
(1005)2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
Expand the following:
(3a – 2b)3