Advertisements
Advertisements
Question
Find the squares of the following:
(2a + 3b - 4c)
Solution
Using (a + b + c)2
= a2 + b2 + c2 + 2ab + 2bc + 2ac
(2a +3b - 4c)2
= (2a)2 + (3b)2 + (4c)2 + 2(2a)(3b) + 2(3b)(-4c) + 2(2a)(-4c)
= 4a2 + 9b2 + 16c2 + 12ab - 24bc - 8ac.
APPEARS IN
RELATED QUESTIONS
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Evaluate of the following:
(99)3
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
Expand the following:
(3x + 4) (2x - 1)
If x + y = 1 and xy = -12; find:
x2 - y2.
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Using suitable identity, evaluate the following:
9992
Factorise the following:
4x2 + 20x + 25