Advertisements
Advertisements
Question
Evaluate of the following:
(99)3
Solution
In the given problem, we have to find the value of numbers
Given (99)3
In order to find (99)3 we are using identity `(a-b)^3 = a^3 - b^3 - 3ab (a-b)`
We can write (99)3 as `(100 - 1)^3`
Hence where a= 100,b =1
(99)3 ` = (100 - 1)^3`
`= (100)^3 - (1)^3 - 3 (100)(1)(100 - 1)`
`= 1000000 - 1 - 300 xx 99`
`= 1000000 - 1 - 29700`
`= 1000000 - 29701`
` = 970299`
The value of (99)3 is 970299 .
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Evaluate the following without multiplying:
(95)2
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
Simplify:
(2x + y)(4x2 - 2xy + y2)