Advertisements
Advertisements
Question
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Options
3(a + b) ( b+ c) (c + a)
3(a − b) (b − c) (c − a)
(a − b) (b − c) (c − a)
none of these
Solution
We have to find the value of \[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Using Identity `a^3 +b^3 +c^3 = 3abc` we get,
`(a^2 -b^2)^3 +(b^2 - c^2)^3 +(c^2 -a^2)^3 = 3(a^2 -b^2)(b^2 -c^2 )(c^2 -a^2)`
` = 3(a-b)(a +b)(b -c )(b + c )(c - a)(c +a)`
`(a-b)^3+ (b-c)^3 +(c-a)^3 = 3 (a-b) (b-c)(c-a)`
`((a^2 -b^2)^3 +(b^2 - c^2)^3 +(c^2 -a^2)^3)/((a-b)^3 +(b-c)^3 +(c-a)^3) =(3(a-b)(a+b)(b-c)(b+c)(c-a)(c+a))/(3(a-b)(b-c)(c-a))`
` = (a+b)(b+c)(c+a)`
Hence the value of \[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\] is `(a+b)(b+c)(c+a)`.
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Factorise the following:
27y3 + 125z3
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
The product (x2−1) (x4 + x2 + 1) is equal to
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Use the direct method to evaluate :
(x+1) (x−1)
Use the direct method to evaluate :
(2a+3) (2a−3)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Evaluate: (2 − z) (15 − z)
Expand the following:
(a + 4) (a + 7)
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If p + q = 8 and p - q = 4, find:
p2 + q2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`