Advertisements
Advertisements
प्रश्न
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
पर्याय
3(a + b) ( b+ c) (c + a)
3(a − b) (b − c) (c − a)
(a − b) (b − c) (c − a)
none of these
उत्तर
We have to find the value of \[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Using Identity `a^3 +b^3 +c^3 = 3abc` we get,
`(a^2 -b^2)^3 +(b^2 - c^2)^3 +(c^2 -a^2)^3 = 3(a^2 -b^2)(b^2 -c^2 )(c^2 -a^2)`
` = 3(a-b)(a +b)(b -c )(b + c )(c - a)(c +a)`
`(a-b)^3+ (b-c)^3 +(c-a)^3 = 3 (a-b) (b-c)(c-a)`
`((a^2 -b^2)^3 +(b^2 - c^2)^3 +(c^2 -a^2)^3)/((a-b)^3 +(b-c)^3 +(c-a)^3) =(3(a-b)(a+b)(b-c)(b+c)(c-a)(c+a))/(3(a-b)(b-c)(c-a))`
` = (a+b)(b+c)(c+a)`
Hence the value of \[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\] is `(a+b)(b+c)(c+a)`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
103 × 107
Evaluate the following using identities:
(2x + y) (2x − y)
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
(a − b)3 + (b − c)3 + (c − a)3 =
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Evalute : `( 7/8x + 4/5y)^2`
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate :
(ab+x2) (ab−x2)
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
Evaluate the following without multiplying:
(999)2
If x + y = 9, xy = 20
find: x2 - y2.
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If m - n = 0.9 and mn = 0.36, find:
m + n