Advertisements
Advertisements
प्रश्न
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
पर्याय
108
207
669
729
उत्तर
We have to find the value of `a^3 +b^3 +c^3 - 3abc`
Given `a+b+c = 9,ab +bc +ca = 23`
Using identity `(a+b+c)^2 = a^2 +b^2 +c^2 +2ab +2bc + 2ca` we get,
`(9)^2 = a^2 +b^2 +c^2 +2 (ab+bc +ca)`
` 9 xx 9 = a^2 +b^2 +c^2 +2 xx 23`
`81 = a^2 +b^2 +c^2 +46`
By transposing +46 to left hand side we get,
`81-46 = a^2 +b^2 +c^2`
`35 = a^2 +b^2 +c^2`
Using identity `a^3 +b^3 +c^3 -3abc = (a+b+c)[a^2 + b^2 +c^2 - (ab+bc+ca)]`
`9 xx [35 -23]`
` = 9 xx 12`
` = 108`
The value of `a^3 +b^3 +c^3 -3abc` is 108.
APPEARS IN
संबंधित प्रश्न
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
Find the following product:
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
Evalute : `((2x)/7 - (7y)/4)^2`
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Evaluate: (2a + 0.5) (7a − 0.3)
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Simplify by using formula :
(x + y - 3) (x + y + 3)
If x + y = 1 and xy = -12; find:
x - y
If x + y = 1 and xy = -12; find:
x2 - y2.
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
Expand the following:
`(1/x + y/3)^3`