Advertisements
Advertisements
प्रश्न
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
उत्तर
In the given problem, we have to find value of `a^3 + b^3 + c^3 - 3abc`
Given `a+b+c = 9, ab + bc + ca = 26`
We shall use the identity
`(a+b+c)^2 = a^2 + b^2 + 2 (ab + bc + ca)`
`(a+b+c)^2 = a^2 + b^2 + c^2 + 2(26)`
`(9)^2 = a^2 + b^2 + c^2 + 52`
`81 - 52 = a^2 b^ + c^2`
`29 = a^2 +b^2 + c^2`
We know that
`a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 +c^2 - ab - bc - ca)`
`a^3 + b^3 + c^3 - 3abc = (a+b+c)[(a^2 + b^2 +c^2) -( ab + bc +ca)]`
Here substituting `a+b + c = 9,ab + bc + ca = 26,a^2 + b^2 + c^2 = 29 ` we get,
`a^3 + b^3 + c^3 - 3abc = 9 [(29 - 26)]`
` = 9 xx 3`
` = 27`
Hence the value of `a^3 + b^3 + c^3 - 3abc` is 27.
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
`[3/2x+1]^3`
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
Evaluate the following using identities:
(2x + y) (2x − y)
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Evaluate of the following:
(99)3
Evaluate of the following:
1043 + 963
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
Evaluate:
253 − 753 + 503
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
Evaluate: (6 − 5xy) (6 + 5xy)
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
If a - b = 10 and ab = 11; find a + b.
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Expand the following:
(3a – 5b – c)2
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.