Advertisements
Advertisements
प्रश्न
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
उत्तर
Volume of cuboid = (length) × (width) × (height)
We have, 12ky2 + 8ky – 20k
= 4[3ky2 + 2ky – 5k]
= 4[k(3y2 + 2y – 5)]
= 4 × k × (3y2 + 2y – 5)
= 4k[3y2 – 3y + 5y – 5]
= 4k[3y(y – 1) + 5(y – 1)]
= 4k[(3y + 5) × (y – 1)]
= 4k × (3y + 5) × (y – 1)
Thus, the possible dimensions of the cuboid are 4k, (3y + 5) and (y – 1).
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Evaluate the following product without multiplying directly:
103 × 107
Factorise the following:
27y3 + 125z3
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Evaluate the following using identities:
`(a^2b - b^2a)^2`
Simplify (2x + p - c)2 - (2x - p + c)2
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Use identities to evaluate : (998)2
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Evaluate the following :
1.81 x 1.81 - 1.81 x 2.19 + 2.19 x 2.19
Expand the following:
(4a – b + 2c)2
Expand the following:
`(1/x + y/3)^3`
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.