Advertisements
Advertisements
प्रश्न
Expand the following:
(4a – b + 2c)2
उत्तर
(4a – b + 2c)2
= (4a)2 + (–b)2 + (2c)2 + 2(4a)(–b) + 2(–b)(2c) + 2(2c)(4a) ...[Using identity, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca]
= 16a2 + b2 + 4c2 – 8ab – 4bc + 16ac
APPEARS IN
संबंधित प्रश्न
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Write in the expanded form: `(x/y + y/z + z/x)^2`
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Find the following product:
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Use identities to evaluate : (998)2
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Use the direct method to evaluate :
(4+5x) (4−5x)
If x + y = 9, xy = 20
find: x2 - y2.
If m - n = 0.9 and mn = 0.36, find:
m + n
The coefficient of x in the expansion of (x + 3)3 is ______.
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Factorise the following:
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz