Advertisements
Advertisements
प्रश्न
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
पर्याय
x16 − y16
x8 − y8
x8 + y8
x16 + y16
उत्तर
Given `(x-y)(x+y)(x^2 +y^2)(x^4 + y^4)`
Using the identity `(x-y) (x+y) = x^2 - y^2`
`(x-y)(x+y)(x^2 +y^2)(x^4 + y^4) = (x-y)(x+y)(x^2 +y^2)(x^4 + y^4)`
` = (x^2-y^2)(x^2 + y^2)(x^4 + y^4)`
`= [(x^2)^2 - (y^2)^2][x^4 +y^4]`
` = [(x^4)^2 - (y^4)^2]`
` = [x^8 - y^8]`
Hence `(x-y)(x+y)(x^2 +y^2)(x^4 + y^4)` is equal to ` x^8 - y^8`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
Evaluate following using identities:
991 ☓ 1009
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
Evaluate of the following:
(598)3
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If a − b = 5 and ab = 12, find the value of a2 + b2
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Use identities to evaluate : (998)2
Find the squares of the following:
9m - 2n
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
Using suitable identity, evaluate the following:
1033
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`