Advertisements
Advertisements
प्रश्न
Evaluate of the following:
(598)3
उत्तर
In the given problem, we have to find the value of numbers
Given (598)3
In order to find (598)3we are using identity `(a-b)^3 = a^3 - b^3 - 3ab (a-b)`
We can write (598)3 as `(600 - 2)^3`
Hence where a = 600 , b = 2
(598)3 ` = (600 - 2)^3`
` = (600)^3 - (2)^3 - 3(600)(2) (600 - 2)`
` = 216000000 - 8 - 3600 xx 598`
` = 216000000 - 8 - 2152800`
` = 216000000 - 2152808`
` = 213847192`
The value of (598)3 is 213847192.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Simplify the following:
0.76 x 0.76 - 2 x 0.76 x 0.24 x 0.24 + 0.24
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Write the expanded form:
`(-3x + y + z)^2`
Simplify (2x + p - c)2 - (2x - p + c)2
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
Evaluate of the following:
1113 − 893
Evaluate of the following:
463+343
Use identities to evaluate : (502)2
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
The coefficient of x in the expansion of (x + 3)3 is ______.
Expand the following:
`(1/x + y/3)^3`