Advertisements
Advertisements
प्रश्न
Evaluate of the following:
1113 − 893
उत्तर
In the given problem, we have to find the value of numbers
Given 1113 − 893
We can write 1113 − 893 as `(100+ 11)^3 - (100 - 11)^3`
We shall use the identity `(a+b)^3 - (a-b)^3 = 2[b^3 + 3a^2b]`
Here a=100 , b = 11
\[{111}^3 - {89}^3 = \left( 100 + 11 \right)^3 - \left( 100 - 11 \right)^3\]
`= 2[11^3 + 3 (100)^2(11)]`
`= 2 [1331 + 330000]`
`= 2 [331331]`
` = 662662`
Hence the value of 1113 − 893 is 662662 .
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
(2a – 3b)3
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Factorise the following:
27y3 + 125z3
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
If a + b = 10 and ab = 21, find the value of a3 + b3
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Evaluate of the following:
(9.9)3
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If x + y = 9, xy = 20
find: x2 - y2.
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
(2x + y)(4x2 - 2xy + y2)
Expand the following:
`(4 - 1/(3x))^3`