Advertisements
Advertisements
प्रश्न
Evaluate of the following:
1113 − 893
उत्तर
In the given problem, we have to find the value of numbers
Given 1113 − 893
We can write 1113 − 893 as `(100+ 11)^3 - (100 - 11)^3`
We shall use the identity `(a+b)^3 - (a-b)^3 = 2[b^3 + 3a^2b]`
Here a=100 , b = 11
\[{111}^3 - {89}^3 = \left( 100 + 11 \right)^3 - \left( 100 - 11 \right)^3\]
`= 2[11^3 + 3 (100)^2(11)]`
`= 2 [1331 + 330000]`
`= 2 [331331]`
` = 662662`
Hence the value of 1113 − 893 is 662662 .
APPEARS IN
संबंधित प्रश्न
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Factorise:
27x3 + y3 + z3 – 9xyz
Evaluate the following using identities:
`(2x+ 1/x)^2`
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
If x = −2 and y = 1, by using an identity find the value of the following
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Find the square of : 3a + 7b
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Expand the following:
(x - 5) (x - 4)
Expand the following:
`(2"a" + 1/(2"a"))^2`
Evaluate the following without multiplying:
(103)2
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Evaluate the following :
1.81 x 1.81 - 1.81 x 2.19 + 2.19 x 2.19
Find the following product:
(x2 – 1)(x4 + x2 + 1)