Advertisements
Advertisements
प्रश्न
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
उत्तर
(i) Consider the given equation
a2 - 5a - 1 = 0
Rewrite the given equation, we have
a2 - 1 = 5a
⇒ `[ a^2 - 1 ]/a = 5`
⇒ `[ a^2/a - 1/a ] = 5`
⇒ `a - 1/a = 5` ...(1)
(ii) We need to find `a + 1/a`:
We know the identity, (a - b)2 = a2 + b2 - 2ab
∴ `( a - 1/a )^2 = a^2 + 1/a^2 - 2`
⇒ `(5)^2 = a^2 + 1/a^2 - 2` [From(1)]
⇒ `25 = a^2 + 1/a^2 - 2`
⇒ `a^2 + 1/a^2 = 27` ...(2)
Now consider the identity (a + b)2 = a2 + b2 + 2ab
∴ `( a + 1/a )^2 = a^2 + 1/a^2 + 2`
⇒ `( a + 1/a )^2 = 27 + 2` [From (2)]
⇒ `( a + 1/a )^2 = 29`
⇒ `a + 1/a = +- sqrt29` ...(3)
(iii) We need to find `a^2 - 1/a^2`
We know the identity, a2 - b2 = (a + b)(a - b)
∴ `a^2 - 1/a^2 = ( a + 1/a )( a - 1/a )` ...(4)
From equation (3), we have,
` a + 1/a = +- sqrt29`
From equation (1), we have,
`a - 1/a = 5`;
Thus, identity (4), becomes,
`a^2 - 1/a^2 = (+- sqrt29)(5)`
⇒ `a^2 - 1/a^2 = 5(+- sqrt29 )`
APPEARS IN
संबंधित प्रश्न
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
Evaluate of the following:
(9.9)3
Evaluate of the following:
463+343
If x = −2 and y = 1, by using an identity find the value of the following
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
The product (x2−1) (x4 + x2 + 1) is equal to
Use the direct method to evaluate :
(2+a) (2−a)
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`