Advertisements
Advertisements
प्रश्न
If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.
उत्तर
Given that ( 3x + 4y ) = 16 and xy = 4
We need to find 9x2 + 16y2.
We know that
( a + b )2 = a2 + b2 + 2ab
Consider the square of 3x + 4y :
∴ ( 3x + 4y )2 = (3x)2 + (4y)2 + 2 x 3x x 4y
⇒ ( 3x + 4y )2 = 9x2 + 16y2 + 24xy .....(1)
Substitute the values of ( 3x + 4y ) and xy
in the above equation (1), we have
( 3x + 4y )2 = 9x2 + 16y2 + 24xy
⇒ (16)2 = 9x2 + 16y2 + 24(4)
⇒ 256 = 9x2 + 16y2 + 96
⇒ 9x2 + 16y2 = 160
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Evaluate of the following:
(103)3
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Expand the following:
(a + 3b)2
If p + q = 8 and p - q = 4, find:
pq
If m - n = 0.9 and mn = 0.36, find:
m2 - n2.
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
(7a +5b)2 - (7a - 5b)2
Expand the following:
(3a – 5b – c)2
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).