Advertisements
Advertisements
प्रश्न
If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.
उत्तर
Given that ( 3x + 4y ) = 16 and xy = 4
We need to find 9x2 + 16y2.
We know that
( a + b )2 = a2 + b2 + 2ab
Consider the square of 3x + 4y :
∴ ( 3x + 4y )2 = (3x)2 + (4y)2 + 2 x 3x x 4y
⇒ ( 3x + 4y )2 = 9x2 + 16y2 + 24xy .....(1)
Substitute the values of ( 3x + 4y ) and xy
in the above equation (1), we have
( 3x + 4y )2 = 9x2 + 16y2 + 24xy
⇒ (16)2 = 9x2 + 16y2 + 24(4)
⇒ 256 = 9x2 + 16y2 + 96
⇒ 9x2 + 16y2 = 160
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Factorise the following:
64m3 – 343n3
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Write in the expanded form: (ab + bc + ca)2
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
Simplify `(a + b + c)^2 + (a - b + c)^2`
Find the following product:
If x = −2 and y = 1, by using an identity find the value of the following
If m - n = 0.9 and mn = 0.36, find:
m + n