मराठी

If 3x - 7y = 10 and Xy = -1, Find the Value of 9x^2 + 49y^2 - Mathematics

Advertisements
Advertisements

प्रश्न

If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`

उत्तर

We have

`(3x - 7y)^2 = (3x)^2 + (-7y)^2 - 2(3x)(7y)`

`= 9x^2 + 49y^2 - 42xy`

`=> [10]^2 = 9x^2 + 49y^2 - 42xy`     [∵ 3x - 7y = 10]

`=> 100 = 9x^2 + 49y^2 - 42[-1]`     [∵ xy = -1]

`=> 100 - 42 = 9x^2 + 49y^2`

`=> 9x^2 + 49y^2 = 58`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Algebraic Identities - Exercise 4.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 4 Algebraic Identities
Exercise 4.1 | Q 9 | पृष्ठ ७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Use suitable identity to find the following product:

(x + 4) (x + 10) 


Evaluate the following product without multiplying directly:

104 × 96


Expand the following, using suitable identity:

(–2x + 3y + 2z)2


Write the following cube in expanded form:

(2a – 3b)3


Evaluate the following using identities:

(2x + y) (2x − y)


If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.


If a − b = 4 and ab = 21, find the value of a3 −b3


If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]


Find the following product:

(3x + 2y) (9x2 − 6xy + 4y2)


Find the following product:

\[\left( \frac{2}{x} + 3x \right) \left( \frac{4}{x^2} + 9 x^2 - 6 \right)\]

If x = −2 and y = 1, by using an identity find the value of the following

\[\left( \frac{2}{x} - \frac{x}{2} \right) \left( \frac{4}{x^2} + \frac{x^2}{4} + 1 \right)\]

If x = −2 and y = 1, by using an identity find the value of the following

\[\left( 5y + \frac{15}{y} \right) \left( 25 y^2 - 75 + \frac{225}{y^2} \right)\]

Find the following product:

(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)


Find the following product:

(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)


Evaluate:

483 − 303 − 183


If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]


If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =

 


If  \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]


Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1


Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×