Advertisements
Advertisements
प्रश्न
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
उत्तर
We have
`(3x - 7y)^2 = (3x)^2 + (-7y)^2 - 2(3x)(7y)`
`= 9x^2 + 49y^2 - 42xy`
`=> [10]^2 = 9x^2 + 49y^2 - 42xy` [∵ 3x - 7y = 10]
`=> 100 = 9x^2 + 49y^2 - 42[-1]` [∵ xy = -1]
`=> 100 - 42 = 9x^2 + 49y^2`
`=> 9x^2 + 49y^2 = 58`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Evaluate the following product without multiplying directly:
104 × 96
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Write the following cube in expanded form:
(2a – 3b)3
Evaluate the following using identities:
(2x + y) (2x − y)
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
If a − b = 4 and ab = 21, find the value of a3 −b3
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
Find the following product:
If x = −2 and y = 1, by using an identity find the value of the following
If x = −2 and y = 1, by using an identity find the value of the following
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
Evaluate:
483 − 303 − 183
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)