Advertisements
Advertisements
प्रश्न
If x = −2 and y = 1, by using an identity find the value of the following
उत्तर
In the given problem, we have to find the value of \[\left( \frac{2}{x} - \frac{x}{2} \right) \left( \frac{4}{x^2} + \frac{x^2}{4} + 1 \right)\] using identity
Given x = -2
We shall use the identity `(a+b)(a^2 + ab + b^2) = (a^3 - b^3)`
We can rearrange the \[\left( \frac{2}{x} - \frac{x}{2} \right) \left( \frac{4}{x^2} + \frac{x^2}{4} + 1 \right)\]as
`(2/x - x/2)(4/x^2 + x^2/4 + 1) = (2/x - x/2)((2/x)^2 +2/x xx x/2+ (x/2)^2)`
` = (2/x)^3 - (x/2)^3`
\[= \left( \frac{2}{x} \right) \times \left( \frac{2}{x} \right) \times \left( \frac{2}{x} \right) - \left( \frac{x}{2} \right) \times \left( \frac{x}{2} \right) \times \left( \frac{x}{2} \right)\]
\[ = \frac{8}{x^3} - \frac{x^3}{8}\]
Now substituting the value x = -2 in `8/x^2 - x^3/8`we get,
` = 8/(-2)^3 - ( -2)^3/8`
` = 8/-8 - -8/8`
` = -1 - (-1)`
` = -1+1`
` = 0`
Hence the Product value of \[\left( \frac{2}{x} - \frac{x}{2} \right) \left( \frac{4}{x^2} + \frac{x^2}{4} + 1 \right)\] is = 0.
APPEARS IN
संबंधित प्रश्न
Evaluate the following using suitable identity:
(998)3
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
Write in the expanded form:
`(m + 2n - 5p)^2`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Evaluate of the following:
(598)3
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
Use the direct method to evaluate :
(2+a) (2−a)
Use the direct method to evaluate :
(2a+3) (2a−3)
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
Simplify:
(2x + y)(4x2 - 2xy + y2)
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
Expand the following:
(–x + 2y – 3z)2
Factorise the following:
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz
Expand the following:
`(1/x + y/3)^3`
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.