Advertisements
Advertisements
प्रश्न
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
उत्तर
In the given problem, we have to find `x^2 + 1/x^2`
Given `(x-1/x)=-1`
On squaring both sides we get,
`(x-1/x)^2=(-1)^2`
We shall use the identity `(x-y )^2 = x^2 - 2xy + y`
`x^2 +1/x^2 - 2 xx x xx 1/x =- 1 xx -1`
`x^2 +1/x^2 -2 =1`
`x^2 +1/x^2 = 1+2`
`x^2+1/x^2 =3`
Hence the value of ` x^2 +1/x^2`is 3 .
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
`[x-2/3y]^3`
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Factorise:
27x3 + y3 + z3 – 9xyz
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
Write in the expanded form:
`(2 + x - 2y)^2`
Write in the expanded form: (-2x + 3y + 2z)2
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Find the following product:
If a + b = 8 and ab = 6, find the value of a3 + b3
If a + b = 6 and ab = 20, find the value of a3 − b3
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Evaluate: 203 × 197
Simplify by using formula :
(5x - 9) (5x + 9)
Evaluate the following without multiplying:
(103)2
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
Expand the following:
`(4 - 1/(3x))^3`