Advertisements
Advertisements
प्रश्न
Write the following cube in expanded form:
`[x-2/3y]^3`
उत्तर
(x - y)3 = x3 - y3 - 3xy(x - y)
Using Identity
`[x - 2/3y]^3 = x^3 - (2/3y)^3 - 3(x)(2/3y)(x - 2/3y)`
= `x^3 - 8/27y^3 - 2xy(x - 2/3y)`
= `x^3 - 8/27y^3 - 2x^2y + 4/3xy^2`
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
`[3/2x+1]^3`
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Evaluate of the following:
(103)3
Evaluate of the following:
(598)3
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If a − b = 5 and ab = 12, find the value of a2 + b2
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
Use the direct method to evaluate :
(4+5x) (4−5x)
If p + q = 8 and p - q = 4, find:
pq
If x + y = 1 and xy = -12; find:
x2 - y2.
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
Simplify:
(7a +5b)2 - (7a - 5b)2
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Expand the following:
(4a – b + 2c)2
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`