Advertisements
Advertisements
प्रश्न
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
पर्याय
5
10
15
none of these
उत्तर
In the given problem, we have to find the value of `x + 1/x`
Given `x^3 + 1/x^3 = 110`
We shall use the identity `(a + b)^3 = a^3 + b^3 + 3ab (a+b)`
`(x+1/x)^3 = x^3 + 1/x^3 + 3 xx x xx 1/x(x+ 1/x)`
`(x+1/x)^3 = x^3 + 1/x^3 + 3 (x+ 1/x)`
Put `x + 1/x = y`we get,
`(y)^3 = x^3 + 1/x^3 + 3 (y)`
Substitute y = 5 in the above equation we get
`(5)^3 = x^3 + 1/x^3 + 3(5)`
`125 = x^3 + 1/x^3 + 15`
`125 - 15 = x^3 + 1/x^3`
`110 = x^3 + 1/x^3`
The Equation `(y)^3 = x^3 + 1/x^3 + 3(y)` satisfy the condition that `x^3 + 1/x^3 = 110`
Hence the value of `x+ 1/x` is 5.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
95 × 96
Expand the following, using suitable identity:
(3a – 7b – c)2
Simplify the following:
0.76 x 0.76 - 2 x 0.76 x 0.24 x 0.24 + 0.24
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
Write in the expanded form:
`(2 + x - 2y)^2`
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Use the direct method to evaluate :
(2a+3) (2a−3)
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Evaluate: (9 − y) (7 + y)
Evaluate: (5xy − 7) (7xy + 9)
Evaluate the following without multiplying:
(999)2
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Expand the following:
(3a – 2b)3