Advertisements
Advertisements
प्रश्न
Expand the following, using suitable identity:
(3a – 7b – c)2
उत्तर
It is known that,
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
(3a – 7b – c)2 = (3a)2 + (–7b)2 + (–c)2 + 2(3a)(–7b) + 2(–7b)(–c) + 2(–c)(3a)
= 9a2 + 49b2 + c2 – 42ab + 14bc – 6ac
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Evaluate the following product without multiplying directly:
104 × 96
Expand the following, using suitable identity:
(x + 2y + 4z)2
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Evaluate of the following:
`(10.4)^3`
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
If a + b = 7 and ab = 10; find a - b.
Expand the following:
(3x + 4) (2x - 1)
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)