Advertisements
Advertisements
प्रश्न
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
उत्तर
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
= 3a(9a2 + 4b2 + c2 - 6ab + 2bc + 3a) + 2b (9a2 + 4b2 + c2 - 6ab + 2bc + 3ca) - c(9a2 + 4b2 + c2 - 6ab + 2bc + 3ca)
= 27a3 + 12ab2 + 3ac2 - 18a2b + 6abc + 9a2c + 18a2b + 8b3 + 2bc2 - 12ab2 + 4b2c + 6abc - 9a2c - 4b2c - c3 + 6abc - 2bc2 - 3ac2
= 27a3 + 8b3 - c3 + 18abc.
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
`[x-2/3y]^3`
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Write in the expand form: `(2x - y + z)^2`
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
Use the direct method to evaluate :
(2+a) (2−a)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.